ENCOUNTER-EVASION PROBLEMS IN QUASIDYNAMIC SYSTEMS

PMM Vol. 42, № 2, 1978, pp. 219-227

G.V.TOMSKII

(Iakutsk)
(Received March 24, 1977)
Encounter-evasion game problems in quasidynamic and semidynamic systems are analyzed. Theorems on the alternative in the class of piecewise-program strategies of the players are stated and proved. The work adjoins the researches in [1-9].

1. Let certain nonempty sets X, U and V exist. Set X is called the state set; $U(V)$ is the first (second) player's set of instantaneous values of the controls. Let $D_{1}\left(D_{2}\right)$ be some nonempty set of mappings on the half-open interval $\left[t_{0}, T\right)$ into $U(V)$ and let some mapping x of set $\left[t_{0}, T\right) \times D_{1} \times D_{2}$ into X be given. Set $D_{1}\left(D_{2}\right)$ is called the set of admissible controls of the first (second) player and the mapping x is called the state function. The quintuple $\Sigma=\left(\left[t_{0}, T\right)\right.$,
$\left.X, D_{1}, D_{2}, x\right)$ is called a quasidynamic system if the following condition is fulfilled:

Condition 1). For any admissible controls $u_{1}, u_{2} \in D_{1}$ and $v_{1}, v_{2} \in D_{2}$ of the players and for any instants $t_{0} \leqslant t_{1}<t_{2}<t \leqslant T$ there exist admissible controls $\quad u_{3} \in D_{1}$ and $v_{3} \in D_{2}$ such that

$$
u_{3}(t)=\left\{\begin{array}{l}
u_{1}(t), t_{1} \leqslant t<t_{2}, \\
u_{2}(t), t_{2} \leqslant t<t_{3},
\end{array} \quad v_{3}(t)=\left\{\begin{array}{l}
v_{1}(t), \quad t_{1} \leqslant t<t_{2} \\
v_{2}(t), \\
t_{2} \leqslant t<t_{3}
\end{array}\right.\right.
$$

An element $x(t)=x(t, u, v)$ of set X is called a state of system Σ at instant t and the mapping $x(\cdot)=\chi(\cdot, u, v)$ of the half-open interval $\left[t_{0}, T\right)$ into set X is called the trajectory of this system, corresponding to the pair of controls u and v. The concept of the players' piecewise-program strategies can be introduced for quasidynamic systems analogously as in the theory of differential games [6]. By $D_{1}\left[t_{1}, t_{2}\right)\left(D_{2}\left[t_{1}, t_{2}\right)\right)$ we denote the set of all restrictions of the first (second) player's admissible controls to the half-open interval $\left[t_{1}, t_{2}\right] \subset\left[t_{0}, T\right)$. Let $\Delta=\left\{t_{0}=t_{0}{ }^{\Delta}<t_{1}{ }^{\Delta}<\ldots<t_{n(\Delta)}{ }^{\Delta}=T\right\}$ be an arbitrary finite partitioning of the half-open interval $\left[t_{0}, T\right)$. The set of all finite partitionings of the half-open interval $\left[t_{\eta}, T\right)$ is denoted $\{\Delta\}$.

The sequence $\varphi_{\Delta}=\left(\varphi_{\Delta, 1}, \ldots, \varphi_{\Delta, n(\Delta)}\right)$, where $\varphi_{\Delta, 1} \in D_{1}\left[t_{0}, t_{1}{ }^{\Delta}\right)$ and $\varphi_{\Delta, k}(k \geqslant 2)$ is any mapping of set $D_{1}\left[t_{0}, t_{k-1}{ }^{\Delta}\right) \times D_{2}\left[t_{0}, t_{k-1}{ }^{\Delta}\right) \quad$ into D_{1} $\left[t_{k-1}{ }^{\Delta}, t_{k}{ }^{\Delta}\right)$, is called the first player's Δ-strategy. The pair $\varphi=\left(\Delta, \varphi_{\Delta}\right)$, where
$\Delta \in\{\Delta\}$ and φ_{Δ} is any Δ-strategy of the first player, is called the first player 's piecewise-program strategy. The sequence $\varphi^{\Delta}=\left(\varphi^{\Delta, 1}, \ldots, \varphi^{\Delta, n(\Delta)}\right)$, where $\varphi^{\Delta, k}$ is any mapping of set $D_{1}\left[t_{0}, t_{k-1}{ }^{\Delta}\right) \times D_{2}\left[t_{0}, t_{k}{ }^{\Delta}\right)$ into $D_{1}\left[t_{k-1}{ }^{\Delta}\right.$, $\left.t_{k}{ }^{\Delta}\right)(k=1,2, \ldots, n(\Delta))$ is called the first player's upper Δ-strategy. The Δ-strategy ψ_{Δ}, the piecewise-program strategy $\psi=\left(\Delta, \psi_{\Delta}\right)$ and the upper
Δ-strategy ψ^{Δ} of the second player are defined similarly. By $D_{1 \Delta}\left(D_{2 \Delta}\right)$ we denote the set of all Δ-strategies, by $D_{1}{ }^{*}\left(D_{2}{ }^{*}\right)$ the set of all piecewise-program
strategies and by $D_{1}{ }^{\Delta}\left(D_{2}{ }^{\Delta}\right)$, the set of all upper Δ-strategies of the first (second) player.

As for differential games [9], any pair of strategies φ^{Δ} and ψ_{Δ} defines a unique pair of controls

$$
u^{\Delta}=u\left(\varphi^{\Delta}, \psi_{\Delta}\right) \in D_{1}, v_{\Delta}=v\left(\varphi^{\Delta}, \psi_{\Delta}\right) \in D_{2}
$$

and, consequently, determines a unique trajectory

$$
x(t)=x\left(t, \varphi^{\Delta}, \psi_{\Delta}\right)=\varkappa\left(t, u^{\Delta}, v_{\Delta}\right)
$$

of system Σ. Analogously, any pair of strategies φ_{Δ} and $\boldsymbol{\psi}^{\Delta}$ defines a unique trajectory

$$
x(t)=x\left(t, \varphi_{\Delta}, \psi^{\Delta}\right)=x\left(t, u\left(\varphi_{\Delta}, \psi^{\Delta}\right), v\left(\varphi_{\Delta}, \psi^{\Delta}\right)\right)
$$

and any pair of strategies φ and ψ defines a unique trajectory

$$
x(t)=x(t, \varphi, \psi)=x(t, u(\varphi, \psi), v(\varphi, \psi))
$$

of system Σ.
Let $\Phi(\Sigma)$ be the set of all trajectories of the quasidynamic system Σ and let a certain functional g be given on the set $\Phi(\Sigma) \times D_{1} \times D_{2}$. Then, the functional

$$
\begin{equation*}
I=I(u, v)=g(x(\cdot, u, v), u, v) \tag{1.1}
\end{equation*}
$$

is defined on the set $\quad D_{1} \times D_{2}$. This functional is called the first player 's payoff; the functional $-I$ is called the second player's payoff. The mapping (1.1) defines the functionals

$$
\begin{equation*}
I=I\left(\varphi^{\Delta}, \psi_{\Delta}\right)=I\left(u\left(\varphi^{\Delta}, \psi_{\Delta}\right), v\left(\varphi^{\Delta}, \psi_{\Delta}\right)\right) \tag{1.2}
\end{equation*}
$$

on the sets $D_{1}{ }^{\Delta} \times D_{2 \Delta}$

$$
\begin{equation*}
I=I\left(\varphi_{\Delta}, \psi^{\Delta}\right)=I\left(u\left(\varphi_{\Delta}, \psi^{\Delta}\right), v\left(\varphi_{\Delta}, \psi^{\Delta}\right)\right) \tag{1.3}
\end{equation*}
$$

on the set $D_{1 \Delta} \times D_{2}{ }^{\Delta}$ and

$$
\begin{equation*}
I=I(\varphi, \psi)=I(u(\varphi, \psi), v(\varphi, \psi)) \tag{1.4}
\end{equation*}
$$

on the set $D_{1}{ }^{*} \times D_{2}{ }^{*}$.
Definition 1.1 . The triple $\Gamma=\left\langle I, D_{1}{ }^{*}, D_{2}{ }^{*}\right\rangle$ is called an antagonistic quasidynamic game. The quantity

$$
\mathbf{V}^{*}=\inf _{\psi \in D_{2}^{*}} \sup _{\varphi \in D_{1}^{*}} I(\varphi, \psi)
$$

is called the upper value and the quantity

$$
\mathbf{V}_{*}=\sup _{\varphi \in D_{1} *} \inf _{\psi \in D_{2}^{*}} I(\varphi, \psi)
$$

is called the lower value of the game Γ. We say that game Γ has a value if the equality

$$
\mathbf{v}^{*}=\mathbf{v}_{*}=\mathrm{val} \Gamma
$$

is valid.
The triple $\Gamma^{\Delta}=\left\langle I, D_{1}^{\Delta}, D_{2 \Delta}\right\rangle\left(\Gamma_{\Delta}=\left\langle I, D_{1 \Delta}, D_{2}{ }^{\Delta}\right\rangle\right)$ is called an upper (a lower) Δ-game. In these games one of the players is discriminated against. We introduce the notation

$$
\begin{aligned}
& \mathbf{V}^{\Delta}=\inf _{\Psi_{\Delta} \in D_{2 \Delta}} \sup _{\varphi^{\Delta} \in D_{D} \Delta} I\left(\varphi^{\Delta}, \psi_{\Delta}\right) \\
& \mathbf{V}_{\Delta}=\sup _{\varphi_{\Delta} \in D_{1 \Delta} \psi_{\psi^{\Delta} \in D_{\Delta}}} I\left(\varphi_{\Delta}, \psi^{\Delta}\right)
\end{aligned}
$$

The following statement is valid.
Lemma 1.1. If $\Delta_{1} \subset \Delta_{2}$, then

$$
\mathbf{V}^{\Delta_{1}} \geqslant \mathbf{V}^{\Delta_{2}} \geqslant \mathbf{V}^{*} \geqslant \mathbf{V}_{*} \geqslant \mathbf{V}_{\Delta_{2}} \geqslant \mathbf{V}_{\Delta_{1}}
$$

From this lemma it follows that the limits

$$
\mathbf{V}_{+}=\lim _{n \rightarrow \infty} \mathbf{V}^{\omega(n)}, \quad \mathbf{V}_{-}=\lim _{n \rightarrow \infty} \mathbf{V}_{\omega(n)}
$$

exist, where $\{\omega(n)\}, n=1,2, \ldots$ is a sequence of partitionings of the form

$$
\omega(n)=\left\{t_{k}^{n} \mid t_{k}^{n}=t_{0}+k \delta(n), k=0,1, \ldots, 2^{n}\right\}, \quad \delta(n)=\frac{T-t_{0}}{2^{n}}
$$

and if $\quad \mathbf{V}_{+}=\mathbf{V}_{-}$, the quasidynamic game Γ has the value

$$
\text { val } \Gamma=\mathbf{V}_{+}=\mathbf{V}_{-}
$$

As in [9] it can be shown that all upper and lower Δ-games have the values $\mathbf{V}^{\Delta}=\operatorname{val} \Gamma^{\Delta}$ and $\quad \mathbf{V}_{\Delta}=\operatorname{val} \Gamma_{\Delta}$.
2. Let us consider encounter-evasion games $[1-3]$. Let the state set X of system Σ be a metric space with metric d. For any set $K \subset\left[t_{0}, T\right] \times X$ we denote its ε-neighborhood in $\left[t_{0}, T\right) \times X$ by K^{ε}. We formulate the following two problems.

Encounter Problem 2.1. For any number $\varepsilon>0$ find the first player's piecewise-program strategy φ_{ε} such that the relations

$$
\begin{equation*}
\{\tau, x(\tau)\} \in M^{\varepsilon},\{t, x(t)\} \in N^{\varepsilon}, t_{0} \leqslant t<\tau=\tau\left(\varphi_{\varepsilon}, \psi\right) \leqslant T \tag{2.1}
\end{equation*}
$$

are fulfilled for all trajectories

$$
x(t)=x\left(t, \varphi_{\varepsilon}, \psi\right), \psi \in D_{2}^{*}
$$

Evasion Problem 2.2. Find a number $\varepsilon>0$ and a second player's piecewise-program strategy ψ_{E} excluding the contact (2.1) for any trajectory

$$
x(t)=x\left(t, \varphi, \psi_{2}\right), \varphi \in D_{1}^{*}
$$

On the set of trajectories of the quasidynamic system $\quad \Sigma$ we intruduce the uniform metric

$$
\begin{equation*}
\rho\left[x_{1}(\cdot), x_{2}(\cdot)\right]=\sup _{T_{0} \leqslant t<T} d\left[x_{1}(t), x_{2}(t)\right] \tag{2.2}
\end{equation*}
$$

We state the following conditions.
B. 1. Let $\left\{u^{\delta(n)}\right\}$ be any sequence of admissible controls of the first player, $\delta(n)=\left(T-t_{0}\right) / 2^{n},\{n\} \subset\{1,2, \ldots\} ;$ let $u_{*}{ }^{\delta(n)}(t)=u^{\delta(n)}(t-\delta(n))$ for $t_{0}+\delta(n) \leqslant t<T$ and $u_{*}^{\delta(n)}(t)$ for $t_{0} \leqslant t<t_{0}+\delta(n)$ be restrictions of admissible controls. Then a number $\eta>0$ exists such that $u_{*}{ }^{\delta(n)}$ $\in D_{1}$ if only $\delta(n)<\eta$;
B. 2. $\rho\left[x\left(\cdot, u^{\delta(n)}, v^{\delta(n)}\right), x\left(\cdot, u_{*}^{\delta(n)}, v^{\delta(n)}\right)\right] \rightarrow 0 \quad$ as $\quad n \rightarrow \infty \quad$ uniformly relatively to all $u^{\delta(n)}, u_{*}^{(n)} \in D_{1}$ and $v^{\delta(n)} \in D_{2}$.

The following statement is valid.
Theorem 2.1. If a quasidynamic system Σ satisfies Conditions B. 1 and B. 2 , then either the Encounter Problem 2.1 or the Evasion Problem 2. 2 is solvable for it.

Proof. Let us consider the family of upper $\omega(n)$-games $\Gamma_{\varepsilon}{ }^{\omega(n)}$ in which the first player 's payoff has the form

$$
\begin{align*}
& I_{\varepsilon}=-\inf _{t_{0} \leqslant t<\tau_{\varepsilon}^{N}(u, v)} \operatorname{dist}[\{t, x(t)\}, M], \quad e>0 \tag{2,3}\\
& \tau_{\varepsilon}^{N}=\inf \left\{t_{0} \leqslant t<T \mid\{t, x(t)\} \in\left[\left(\left[t_{0}, T\right) \times X\right) \backslash N^{\varepsilon}\right]\right\} \\
& \left.\operatorname{dist}[\{t, x\}, M]=\inf _{\left(t_{*}, x_{*} \mid \in M\right.}\left\{\left|t-t_{*}\right|+d \mid x, x_{*}\right]\right\} \\
& x(t)=x(t, u, v)
\end{align*}
$$

Let a number $\varepsilon>0$ exists such that

$$
\mathbf{V}_{+}(\varepsilon)=\lim _{n \rightarrow \infty} \mathbf{V}_{\varepsilon}^{\omega(n)}=\lim _{n \rightarrow \infty} \operatorname{val} \Gamma_{\varepsilon}^{\omega(n)}<0
$$

Then the second player's $\quad \omega(n)$-strategies $\quad \psi_{\omega(n)}^{\ell}$ and a number $\quad N_{1}(\varepsilon)$ exist satisfying the condition

$$
I\left(\varphi, \psi_{\omega(n)}^{\varepsilon}\right)<\mathbf{V}_{+}(\varepsilon) / 2, n>N_{1}(\varepsilon)
$$

for all $\varphi \in D_{1}^{*}$. Consequently

$$
\begin{equation*}
\inf _{t_{0} \leqslant t<\tau_{\mathcal{E}}^{N}\left(\varphi, \psi_{\omega(n)}^{\varepsilon}\right)} \operatorname{dist}\left[\left\{t, \chi\left(t, \varphi, \psi_{\omega(n)}^{\mathrm{z}}\right)\right\}, M\right]>-\frac{\mathbf{V}_{+}(\varepsilon)}{2} \tag{2.4}
\end{equation*}
$$

for all $\varphi \in D_{1}^{*}$ when $n>N_{1}(\varepsilon)$. If $-\mathbf{V}_{+}(\varepsilon) / 2 \geqslant \varepsilon$, then from inequalities (2.4) it follows that the strategies $\psi_{\omega(n)}^{\varepsilon}\left(n>N_{1}(\varepsilon)\right)$ solve Evasion Problem 2.2. It is easy to show that these strategies solve Evasion Problem 2.2 also when $-\mathbf{V}_{+}(\varepsilon) / 2<\varepsilon$.

It remains to consider the case when the relation

$$
\mathbf{V}_{+}(\varepsilon)=0 \leqslant \operatorname{val} \Gamma_{\varepsilon}{ }^{\omega(n)} \leqslant 0, \quad n=1,2, \ldots
$$

is fulfilled for all numbers $\varepsilon>0$. In this case there exist the first player 's upper $\omega(n)$-strategies $\varphi_{\mathrm{e}}{ }^{\omega(n)}$ satisfying the inequality

$$
-\varepsilon / 2<I_{\varepsilon / 2}\left(\varphi_{\varepsilon}{ }^{\omega(n)}, \psi\right) \leqslant 0
$$

for all $\psi \in D_{2}^{*}$. Consequently

$$
\begin{equation*}
\inf _{t_{\sigma} \leqslant t<\tau_{\varepsilon / 2}^{N}\left(\varphi_{\varepsilon}^{\omega(n)}, \psi\right)} \operatorname{dist}\left[\left\{t, x\left(t, \varphi_{\varepsilon}^{\omega(n)}, \psi\right)\right\}, M\right]<\frac{\varepsilon}{2} \tag{2.5}
\end{equation*}
$$

for all $\psi \in D_{2}^{*}$. From Condition B. 1 it follows that for the strategies $\varphi_{8}{ }^{\omega(n)}$ and for any upper $\omega(n)$-strategies of the second player we can construct $\omega(n)$ stra tegies $\varphi_{\varepsilon}(t-\delta(n))$ and $\quad \psi_{\omega(n)}^{*} \quad$ such that if

$$
u_{1}=u\left(\varphi_{\varepsilon}(t-\delta(n)), \psi^{\omega(n)}\right), u_{2}=u\left(\varphi_{e}^{\omega(n)}, \psi_{\omega(n)}^{*}\right)
$$

then

$$
\begin{aligned}
& u_{1}(t)=u_{2}(t-\delta(n)), t_{0}+\delta(n) \leqslant t<T \\
& v\left(\varphi_{\varepsilon}(t-\delta(n)), \psi^{\omega(n)}\right)=v\left(\varphi_{e}^{\omega(n)}, \psi_{\omega(n)}^{*}\right)
\end{aligned}
$$

A method for constructing such strategies has been described in [9]. By Condition B. 2 we can choose a number $N_{2}(\varepsilon)$ such that

$$
\begin{equation*}
\rho\left[x\left(\cdot, \varphi_{\varepsilon}^{\omega(n)}, \psi_{\omega(n)}^{*}\right), x\left(\cdot, \varphi_{\varepsilon}(t-\delta(n)), \psi^{\omega(n)}\right)\right]<\frac{\varepsilon}{2} \tag{2.6}
\end{equation*}
$$

for all $\psi^{\omega(n)} \in D_{2}^{\omega(n)}$ when $n>N_{2}(\varepsilon)$. From inequalities (2.6) and (2.5) we get that the strategies $\varphi_{\varepsilon}(t-\delta(n)), \quad n>N_{2}(\varepsilon)$, solve Encounter Problem 2.1. Thus, we have proved a statement even somewhat stronger than Theorem 2.1 since for all $n=1,2, \ldots$

$$
D_{1 \omega(n)} \subset D_{1}^{*} \subset D_{1} \omega(n), D_{2 \omega(n)} \subset D_{2}^{*} \subset D_{2} \omega(n)
$$

3. The quintuple $\Sigma=\left(\left[t_{0}, T\right], X, D_{1}, D_{2}, x\right)$, where x is a mapping of set $\left[t_{0}, T\right] \times\left[t_{0}, T\right] \times X \times D_{1} \times D_{2}$ into X and D_{1} and D_{2} satisfy Condition 1), is called a dynamic system in the sense of Kalman if it satisfies the conditions:

$$
\text { 2) if } u_{1}, u_{2} \in D_{1}, v_{1}, v_{2} \in D_{2}, \quad u_{1}(s)=u_{2}(s) \text { and } v_{1}(s)=v_{2}(s)
$$

for $t_{0} \leqslant t_{1} \leqslant s<t_{2} \leqslant T$, then for any $x \in X$

$$
\varkappa\left(t_{2}, t_{1}, x, u_{1}, v_{1}\right)=\varkappa\left(t_{2}, t_{1}, x, u_{2}, v_{2}\right)
$$

3) $x(t, t, x, u, v)=x$ for all $t_{0} \leqslant t \leqslant T, x \in X, u \in D_{1} \quad$ and $v \in D_{2}$
4) the relation

$$
x\left(t_{3}, t_{1}, x, u, v\right)=x\left(t_{3}, t_{2}, x\left(t_{2}, t_{1}, x, u, v\right), u, v\right)
$$

is valid for any $t_{0} \leqslant t_{1}<t_{2}<t_{3} \leqslant T$ and for any $x \in X, u \in D_{1}$ and $v \in D_{2}$;
5) the mapping $x=x\left(t, \tau, x_{*}, u, v\right)$ is defined for all $t \geqslant \tau$ and is not necessarily defined for $t<\tau$.

The element $x(t)=x\left(t, t_{*}, x_{*}, u, v\right)$ of set X is called a state of system Σ at instant t and the corresponding mapping $x(\cdot):\left[t_{0}, T\right] \rightarrow X$ is called a trajectory of system Σ if this system is found in state x_{*} at instant t_{*} and controls u and v act on it.

Any dynamic system $\Sigma=\left(\left[t_{0}, T\right], X, D_{1}, D_{2}, x\right)$ defines the quasidynamic system

$$
\Sigma\left(t_{*}, x_{*}\right)=\left(\left[t_{*}, T\right], X, D_{1}\left[t_{*}, T\right), D_{2}\left[t_{*}, T\right), x_{*}\right)
$$

with state function $x_{*}(t, u, v)=\chi\left(t, t_{*}, x_{*}, u, v\right)$, for each fixed initial state $x\left(t_{*}\right)=x_{*}$. The set $\left[t_{0}, T\right] \times X$ is called the position set. For each fixed position $\left\{t_{*}, x_{*}\right\}$ let the functional

$$
I=g\left(x(\cdot), u, v, t_{*}, x_{*}\right)
$$

be given on the set $\Phi\left(\Sigma\left(t_{*}, x_{*}\right)\right) \times D_{1} \times D_{2}$, where $\Phi\left(\Sigma\left(t_{*}, x_{*}\right)\right)$ is the set of all trajectories of system $\Sigma\left(t_{*}, x_{*}\right)$. Then the functional

$$
\begin{equation*}
I=I\left(u, v, t_{*}, x_{*}\right)=g\left(x\left(\cdot, t_{*}, x_{*}, u, v\right), u, v, t_{*}, x_{*}\right) \tag{3.1}
\end{equation*}
$$

has been defined on $D_{1} \times D_{2} \times\left[t_{0}, T\right] \times X$, which we call the first player 's payoff at position $\left\{t_{*}, x_{*}\right\}$.

Definition 3.1. A quasidynamic game described by system $\Sigma\left(t_{*}, x_{*}\right)$, in which the first player 's payoff has the form (3.1), is called a dynamic (k-dynamic) game

$$
\Gamma\left(t_{*}, x_{*}\right)=\left\langle I, D_{1}^{*}\left[t_{*}, T\right), D_{2}^{*}\left[t_{*}, T\right)\right\rangle
$$

described by system $\boldsymbol{\Sigma}$, in which the first player has the same payoff.
The corresponding upper (lower) Δ-games

$$
\begin{aligned}
& \Delta=\left\{t_{*}=t_{0}^{\Delta}<t_{1}^{\Delta}<\ldots<t_{n(\Delta)}^{\Delta}=T\right\} \\
& \mathbf{V}^{\Delta}\left(t_{*}, x_{*}\right)=\operatorname{val} \Gamma^{\Delta}\left(t_{*}, x_{*}\right), \quad \mathbf{V}_{\Delta}\left(t_{*}, x_{*}\right)=\operatorname{val} \Gamma_{\Delta}\left(t_{*}, x_{*}\right) \\
& \mathbf{V}\left(t_{*}, x_{*}\right)=\operatorname{val} \Gamma\left(t_{*}, x_{*}\right)
\end{aligned}
$$

are denoted by the symbol $\Gamma^{\Delta}\left(t_{*}, x_{*}\right)\left(\Gamma_{\Delta}\left(t_{*}, x_{*}\right)\right)$.
4. We introduce the following concepts.

Definition 4.1. The vector $\varphi_{\Delta}=\left(\varphi_{\Delta, 1}, \ldots, \varphi_{\Delta, n(\Delta)}\right)$, where $\varphi_{\Delta, 1} \in$
$D_{1}\left[t_{*}, t_{1}{ }^{\Delta}\right)$ and $\varphi_{\Delta, k}: X \rightarrow D_{1}\left[t_{k-1}^{\Delta}, t_{k}{ }^{\Delta}\right), k=2,3, \ldots, n(\Delta)$, is called a position Δ-strategy and the vector $\varphi^{\Delta}=\left(\varphi^{\Delta, 1}, \ldots, \varphi^{\Delta, n(\Delta)}\right)$, where $\varphi^{\Delta, k}: X \times D_{2}\left[t_{k-1}^{\Delta}, t_{k}^{\Delta}\right) \rightarrow D_{1}\left[t_{k-1}^{\Delta}, t_{k}^{\Delta}\right), k=1,2, \ldots, n(\Delta)$, is called a position upper Δ-strategy of the first player in system $\Sigma\left(t_{*}, x_{*}\right)$. The pair $\varphi=\left(\Delta, \varphi_{\Delta}\right)$, where Δ is an arbitrary finite partitioning of the interval
$\left[t_{*}, T\right]$ and φ_{Δ} is any position Δ-strategy of the first player in system $\Sigma\left(t_{*}\right.$,
x_{*}), is called a position piecewise-program strategy of the first player in sys tem $\Sigma\left(t_{*}, x_{*}\right)$.

The position Δ-strategies Ψ_{Δ}, the position upper Δ-strategies ψ^{Δ} and the position piecewise-program strategies $\psi=\left(\Delta, \psi_{\Delta}\right)$ of the second player in system $\Sigma\left(t_{*}, x_{*}\right)$ are defined similarly.

Piecewise-program strategies were first introduced in differential game theory in precisely such a form. We note that the classes $D_{1}{ }^{*}\left[t_{*}, T\right)$ and $D_{2}{ }^{*}\left[t_{*}, T\right)$ of the player 's piecewise-program strategies, examined in the present paper, contain a wider class of strategies.

Let the state set of dynamic system Σ bea metric space with metric d. For any set $K \subset\left\lceil t_{0} . T\right\rceil \times X$ we denoteits ε-neighborhood in $\left[t_{0}, T\right]$ by K^{ε}. Let there be certainsets M and N in $\left[t_{0}, T\right] \times X$ and let the game 's initial position $\left\{t_{*}, x_{*}\right\}$ be given. We examine the following two problems.

Encounter Problem 4.1. For any number $\varepsilon>0$ find the first player 's position piecewise-program strategy φ_{8} such that the relations

$$
\begin{align*}
& \{\tau, x(\tau)\} \in M^{e},\{t, x(t)\} \in N^{e} \tag{4.1}\\
& t_{*} \leqslant t<\tau=\tau[x(\cdot)] \leqslant T
\end{align*}
$$

are fulfilled for all trajectories

$$
x(t)=x\left(t, t_{*}, x_{*}, \varphi_{\varepsilon}, \psi\right), \quad \psi \in D_{2}^{*}\left[t_{*}, T\right)
$$

Evasion Problem 4.2. Find a number $\varepsilon>0$ and a second player's position piecewise-program strategy ψ_{e} such that contact (4.1) is excluded for all trajectories

$$
x(t)=x\left(t, t_{*}, x_{*}, \varphi, \psi_{\mathrm{z}}\right), \quad \varphi \in D_{1}^{*}\left[t_{*}, T\right)
$$

We consider dynamic systems Σ satisfying the condition
C. 1. For any $t_{0} \leqslant t_{1}<t_{2} \leqslant T$ and $x_{1}, x_{2} \in X$ the controls $u_{*}=u\left(t_{1}\right.$, $\left.t_{2}, x_{1}, x_{2}\right) \in D_{1}\left[t_{1}, t_{2}\right)$ and $v_{*}=v\left(t_{1}, t_{2}, x_{1}, x_{2}\right) \in D_{2}\left[t_{1}, t_{2}\right)$ exist such that

$$
\begin{aligned}
& d^{m}\left[x\left(t, t_{1}, x_{1}, u_{*}, v\right), x\left(t, t_{1}, x_{2}, u, v_{*}\right)\right] \leqslant d^{m}\left[x_{1}, x_{2}\right] \times \\
& \quad \exp \beta\left(t-t_{1}\right)+\gamma\left(t-t_{1}\right)\left(t-t_{1}\right) \lim _{\delta \rightarrow 0} \gamma(\delta)=0, \quad m, \beta>0
\end{aligned}
$$

$$
t_{1} \leqslant t \leqslant t_{2}
$$

for all $u \in D_{1}$ and $v \in D_{2}$, where d is some metric on the state set X.
The following statement is valid.
Theorem 4.1. If a dynamic system Σ satisfies condition C,1, then either the Encounter Problem 4.1 or the Evasion Problem 4.2 is solvable for any position
$\left\{t_{*}, x_{*}\right\}$ of this system.
Proof. Theorem 4. 1 is proved similarly to Theorem 2.1. The position character of the piecewise-program strategies $\varphi_{\varepsilon^{\prime}}$ and ψ_{e} follows from Condition 1) -5) and from the form of the payoff functional

$$
I=-\inf _{t, \leqslant t<\tau_{e}^{N}\left(u, v_{t}, t_{0}, x_{t}\right)} \operatorname{dist}[\{t, x(t)\}, M]
$$

in the auxiliary games $\Gamma_{\varepsilon}{ }^{\omega(n)}\left(t_{*}, x_{*}\right)$.
5. Let us consider dynamic systems satisfying the conditions
6) $U \subset D_{1}, V \subset D_{2}$
C. 2. For all $t_{0} \leqslant t_{1}<T$ and $x_{1}, x_{2} \in X$ the controls $u_{*}=u\left(t_{1}\right.$, $\left.x_{1}, x_{2}\right) \in U \quad$ and $v_{*}=v\left(t_{1}, x_{1}, x_{2}\right) \in V$ exist such that condition (4.2) is fulfilled for all $u \in D_{1}$ and $v \in D_{2}$.

Definition 5.1. A piecewise-programstrategy $\varphi=\left(\Delta ; \varphi_{\Delta, 1}, \ldots, \varphi_{\Delta, n(\Delta)}\right)$
$\left(\psi=\left(\Delta ; \psi_{\Delta, 1}, \ldots, \psi_{\Delta, n(\Delta)}\right)\right)$ of the first (second) player in system $\Sigma\left(t_{*}, x_{*}\right)$ is said to be piecewise-constant if the mappings $\varphi_{\Delta, k}\left(\psi_{\Delta, k}\right), k=1,2, \ldots, n(\Delta)$, take values in set $U(V)$.

The first (second) player's position piecewise-constant strategy

$$
\varphi=\left(\Delta, \varphi_{\Delta}\right) \quad\left(\psi=\left(\Delta, \psi_{\Delta}\right)\right)
$$

in game $\Sigma\left(t_{*}, x_{*}\right)$ can be identified with the mapping $u_{\Delta}(t, x) \quad\left(v_{\Delta}(t, x)\right)$ of set $\left[t_{0}, T\right] \times X$ into $U(V)$ such that

$$
\begin{aligned}
& \varphi_{\Delta, k+1}=u\left(t_{k}, x\right) \quad\left(\psi_{\Delta, k+1}=v\left(t_{k}, x\right)\right) \\
& k=0,1, \ldots, n(\Delta)-1
\end{aligned}
$$

We state two problems.
Encounter Problem 5.1. For any number $\varepsilon>0$ find the first player's position piecewise-constant strategy such that relations (4,1) are fulfilled for all tra jectories

$$
x(t)=\chi\left(t, t_{*}, x_{*}, u_{\Delta}^{\varepsilon}(t, x), \psi\right), \psi \in D_{2}^{*}\left[t_{*}, T\right)
$$

Evasion Problem 5.2. Find a number $\varepsilon>0$ and asecond player's position piecewise-constant strategy $v_{\Delta}{ }^{\varepsilon}(t, x)$ excluding contact (4.1) for all trajectories

$$
x(t)=x\left(t, t_{*}, x_{*}, \varphi, v_{\Delta}^{\varepsilon}(t, x)\right), \varphi \in D_{1}^{*}\left[t_{*}, T\right)
$$

The proof of the next statement is similar to that of Theorem 4.1.
Theorem 5.1. If a dynamic system Σ satisfies Conditions 6) and C.2, then either the Encounter Problem 5.1 or the Evasion Problem 5.2 is solvable for any position $\left\{t_{*}, x_{*}\right\}$ of this system.
6. We introduce the following concept.

Definition 6.1. Any mapping

$$
u(t, x):\left[t_{0}, T\right] \times X \rightarrow U\left(v(t, x):\left[t_{0}, T\right] \times X \rightarrow V\right)
$$

is called a position strategy of the first (second) players in system Σ.
For any position $\left\{t_{*}, x_{*}\right\}$ of system Σ and for any finite partitioning Δ of the interval $\left[t_{*}, T\right]$ the pair $\{\Delta, u(t, x)\}(\{\Delta, v(t, x)\})$, where $u(t, x)$ $(v(t, x))$ is a position strategy, can be treated as a position piecewise-constant strategy of the first (second) player in system $\Sigma\left(t_{*}, x_{*}\right)$.

We examine the following two problems.
Encounter Problem 6.1. Find the first player 's position strategy $u(t, x)$ possessing the property: for any number $\varepsilon>0$ a number $\delta>0$ exists such that relations (4.1) are fulfilled for all trajectories

$$
\begin{aligned}
& x(t)=x\left(t, t_{*}, x_{*},\{\Delta, u(t, x)\}, \psi\right), \psi \in D_{2}^{*}\left[t_{*}, T\right) \\
& |\Delta|=\max _{k=0,1, \ldots, n(\Delta)-1}\left(t_{k+1}^{\Delta}-t_{k} \Delta\right)<\delta
\end{aligned}
$$

Evasion Problem 6.2. Find numbers $\varepsilon>0$ and $\delta>0$ and a second player's position strategy $v(t, x)$ excluding contact (4.1) for all trajectories

$$
x(t)=x\left(t, t_{*}, x_{*}, \varphi,\{\Delta, v(t, x)\}\right), \varphi \in D_{2}^{*}\left[t_{*}, T\right),|\Delta|<\delta
$$

Let us consider dynamic systems Σ satisfying the conditions
7) the state set X is a compact metric space with metric d;
8) for all $\left\{t_{1}, x_{1}\right\} \in\left[t_{0}, T\right] \times X$ and for any number $\varepsilon>0$ a number $\delta=$ $\delta\left(t_{1}, x_{1}, \varepsilon\right)$ exists such that

$$
\sup _{(u, v, t) \in D_{1} \times D_{2} \times\left[t_{*}, T\right]} d\left[x\left(t, t_{1}, x_{1}, u, v\right), x\left(t, t_{1}, x_{2}, u, v\right)\right] \leqslant \varepsilon
$$

if only $d\left[x_{1}, x_{2}\right] \leqslant \delta$.
The following statement is valid.
Theorem 6.1. If a dynamic system Σ satisfies Conditions 1)-8) and C.2, then either the Encounter Problem 6.1 or the Evasion Problem 6.2 is solvable for any position $\left\{t_{*}, x_{*}\right\}$ of this system.

To prove this theorem we use stable bridges similar to those in the theory of posi tion differential games [1-3].

REFERENCES

1. Krasovskii, N.N. and Subbotin, A.I., Position Differential Games. Moscow, "Nauka", 1974.
2. Kurzhanskii, A.V., Differential encounter games with bounded phase coordinates. Dokl. Akad. Nauk SSSR, Vol. 192, No. 3, 1970.
3. Osipov, Iu.S., "On the theory of differential games in distributed - parameter systems. Dokl. Akad. Nauk SSSR, Vol. 223, No. 6, 1975.
4. Malafeev, O.A., Eqilibrium situations in dynamic games. Kibernetika, No. 3. 1974.
5. Nikol'skii, M.S., Dynamic pursuit games. Vestn. Moskovsk, Gos. Univ., Ser. Mat. Mekh., No. 4, 1972.
6. Petrosian, L. A., Differential Pursuit Games. Izd. Leningradsk. Gos. Univ., Leningrad, 1977.
7. Polovinkin, E.S., On two-person antagonistic games in dynamic systems.I. Vestn. Moskovsk. Gos. Univ., Ser. Mat. Mekh., No. 1, 1975.
8. Tomskii, G.V., Existence of values in semidynamic games. Mat. Zametki, Vol. 22, No. 3, 1977.
9. Fridman, A., On the definition of differential games and the existence of game values and saddle points. In: Cybernetic Collection, Issue 9. Moscow, "Mir" . 1972.
