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Encounter-evasion game problems in quasidynamic and semidynamic systems 
are analyzed. Theorems on the alternative in the class of piecewise-program 
strategies of the players are stated and proved. The work adjoins the re- 
se.archesin[l-91. 

1, Let certain nonempty sets X, U and v exist. Set x is called the state 
set; U (V) is the first (second) player’s set of ~s~n~neous values of the controls. 
Let D, (D.-J be some nonempty set of mappings on the half-open interval [to, T) 
into U (V) and let some mapping 3~ of set It,, T) x D, x De into X be 
given. Set D, (De) is called the set of admissible controls of the first ( second ) 
player and the mapping x is called the state function. The quintuple 2 = ([t,, T), 

X, D,, D,, x) is called a quasidynamic system if the following condition is ful- 
filled : 

Condition 1). For any admissible controls ui, us E D, and ul, v2 E D2 
of the players and for any instants to < tl < t2 < t < 2’ there exist admissible 
controls us ED, and v3 E D, such that 

An element z (t) = x (t, u, v) of set X is called a state of system 2 at 
instant t and the mapping 3: (.) = x (. , u, v) of the half-open interval [to, T) 
into set X is called the trajectory of this system, corresponding to the pair of con - 
trols u and v. The concept of the players * piecewise-program strategies can be 
introduced for quasidynamic systems analogously as in the theory of differential games 

Y8 I. BY D, h, t2) P2h t2)) we denote the set of all restrictions of the first 
(second) player’s admissible controls to the half-open interval [tl, ts) C Ito, T). 
Let A = {t, = toA < tlA < . . . < tnta) A = 2”) be an arbitrary finite parti- 
tioning of the half-open interval (t,, T). The set of all finite partitionings of the 
half-open interval ft,, 2’) is denoted (A}. 

The sequence qpb = ((p&,1, . . . , (PA,%(A)), where TA,~ E D, Ito, tlA) and 

TA,k fk > 2) is any maw% of set D, Ito, tk_lA ) x D2 [to, tp-.lA) into D, 
[t h_lA, tkA), is called the first player’s A -strategy. The pair q = (A, cpA), where 

A E {A} and (PA i.2 any A -strategy of the first player, is called the first play- 
er ‘s piecewise-program strategy. The sequence ‘pA = (@J, . . . , q+-“(A)), 
where rpA9k is any mapping of set D, [to, t,_lA) x D, it,, t@) into D, &.lA, 
&A) (k = 1, 2,. . ., n (A)) is called the first player’s upper A -strategy. The 

A -strategy ,,,A, the piecewise-program strategy q = (A, $A) and the upper 
A -strategy qA of the second player are defined similarly. By Dlh (DtA) we 

denote the set of all A -strategies I by D,* (02*) the set of all piecewise-program 
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strategies and by Dp(D,A) , the set of all upper A -strategies of the first (second) 
player. 

As for ~ff~ential games [9], any pair of strategies cpA and %$A defines a 
unique pair of controls 

7.4’ = u (VA, +A) E D,, VA = 0 (q*, $A) E f), 

and, cons~u~Uy , determines a unique trajectory 

2 (t) = 3’. (t, VA, 4A) = x (t, u*., VA) 

of system 2. Analogously, any pair of strategies qA and 9’ defines a unique 
trajectory 

2 (t) = x (t, (PA, 9’) = x (6 u (a)Ah, %*)t v (‘?A, 4’)) 

and any pair of strategies cp and ‘$ defines a unique trajectory 

5 (9 = x (4 cp,4) = x (t, u (cp, !P), v (97 rp)) 
of system Z. 

Let CD (2) be the set of all trajectories of the quasidynamic system x and let 
a certain functional g be given on the set 0 (Z) x D, x D,. Then, the functional 

I =I(U,V)=g(~(.,U,U),u,U) (1.1) 

is defined on the set D, X Da. TNs functional is called the first player ‘s payoff; 
the functional - I is called the second player’s payoff. The mapping (I. 1) defines 
the functionals 

1 = I (q*, $A) = 1 (u (q’*, $A), v (tp’t 4A)) (1.2) 

on the sets D,A x Da4 

1 = f (VA, 9") = 1 (u ((PA, 9’)~ v ((pb, 9’)) 

on the set DIA X Da* and 

(1.3) 

I = I (cp, 9) = 1 (u (cp, 9, v (%9)) (1.4) 

on the set D,* X D,*. 

Definition l,l, The triple I? = (I, L$*, Ds*) is called an antagonistic 
quasidynamic game. The quantity 

v* =&I* Z$*I (cp, 9) 
* I 

is called the upper value and the quantity 

v* =,2np* &f* I(% 9) 
I 

is called the lower value of the game IT. Wesay that game J? hasa value if 
the equality 
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v* = v, = val r 

is valid. 
The triple I” = (I, DIA, DsA) (l?~ = (I, DIA, DsA)) is called an upper 

(a lower) &‘-game. In these games one of the players is discriminated against. We 
introduce the notation 

VA = inf sap 
*AEDaA +GED,~ 

I ((PA* $A) 

VA= sup hf 1 ((PA, 9') 
~AEDIAW+~gA 

The following statement is valid. 

Lemma 1.1. If A, c A,, then 

Vh”>VA’>V*>Ve>v~,>V~l 

From this lemma it follows that the limits 

V, = lim V+) , V_ = Iim Vopj 
n-am n-x% 

dst,where (w (a)}, n = 1, 2, . . . , is a sequence of partitionings of the form 

0 (4 = {G 1 tkn = to + k6 (n), k = 0, 1, . . . , 2n}, 6 (n) = 9 

and if V, = V_, the quasidynamic game I’ has the value 

val I? =v,=v_ 

As in [9] it can be shown that all upper and lower A -games have the values 
VA = val rA and VA = val r,$. 

2. Let us consider encounter-evasion games [ 1 - 3 1, Let the state set x of 
system Z be a metric space with metric d. For any set K C ito, 2’1 X X 
we denote its 8 -neighborhood in It,, 2’) x X by Ke . We formulate the 
following two problems, 

Encounter Problem 2.1. For any number e > 0 find the first player’s 
piecewise-program strategy qe such that the relations 

{z, 5 (a)) E Me, (t, 5 0)) E N8, t, < t < z = z(cp,, *) f T (2.1) 

are fulfilled for all trajectories 

Evasion Problem 2.2. Find a number e > 0 and a second player’s 
piecewise-program strategy qPe excluding the contact (2.1) for any trajectory 

2 0) = x (4 cp, Q&-k).), cp E &* 
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on the set of trajectories of the quasidynamic system Z: we intruduce the uni- 

form metric 

(2.2> 

We state the following conditions. 

B, 1. Let {u*@)} be any sequence of admissible controls of the first player, 
6 (n) = (T - ~~)/2~, (rz) C (1, 2, . . .} ; let ~*~(~)(~) = I,&*) (t - 6 (n)) 

for t, + 6 (n) < t < T and ZJ*~@) (t) for t, < t < t, + 6 (n) be re - 

strictions of admissible controls. Then a number 7 > 0 exists such that u,~(“) 

E Di if only 6 (n) < q; 

B. 2. P IX ( - , ZP), v*(*)), x ( -, u*qn), v~@))] ~4 0 as n 4 00 uni- 

formly relatively to all r,NQ, r+&(n) E L)i, and $Xn) E f),. 

The fo~owing statement is valid. 

T heo re m 2.1. If a quasidynamic system Z satisfies Conditions B ,1 and 

B .2, then either the Encounter Problem 2.1 or the Evasion Problem 2.2 is salvable for it. 

Proof _ Let us consider the family of upper o (n) -games r,N*) in which 

the first player ‘s payoff has the form 

re = - inf 
towzeN@, q 

dist l{t, 5 (t)}, MI, 8>CJ (2.3) 

TgN = inf {&J < t < T I (4 f (t)} E [([to, T) x X) \ Nel} 

dist [{t, z}, Ml = inf 
iL=*:EM 

(1 t - t* 1 + d ix, x,1} 

2 (t> = “rc (t, 24, u) 

Let a number E > 0 exists such that 

V, (e) = lim V,Ocn) = Iim val rt(*)< 0 
R-b00 -0s 

Then the second player’s w (n) -strategies %&l and a number iVr (a) exist 

satisfying the condition 

1 (cp, $?Nn,) < vi. (a)/29 72 > Nl (9 

for all Ep E D,*. Consequently 

inf 

tos-: (rp, *&q ) 

dist r{t, x @, rp, ~~~~~)~, Mj > - v (2.4) 

for all up E D,* when n > iv, (8) . If - V.+. (8)/z > E , then from in- 

equalities (2.4) it follows that the strategies $&, (rz > N, (E)) solve Evasion 

Problem 2.2, It is easy to show that these strategies solve Evasion Problem 2.2 also 

when - v, (&)/a < e * 
It remains to consider the case when the relation 

V,(E) =O,(valr,+),(O, n=1,2,... 
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is fulfilled for all numbers a > 0 . In this case there exist the first player ‘s upper 
0 (n) -strategies [p8WQ satisfying the inequality 

- .a < L/2 (qP’“‘, 9) < 0 
for all -+ E D,*. Co~equ~tly 

(2.5) 

for all 4 E Dz*. From Condition B . 1 it follows that for the strategies (pea@) and 
for any upper w (n) -strategies of the second player we can construct o (n) stra - 

tegies vPe (t - 6 (n)) and I&$&, such that if 

ur = U (tp& (t - 6 (n)), *et”)), us = u (~~~(~), 2/);rpg@)) 

then 
Ur (t) = Us (t - 6 (n)), to + 6 (n) < t < T 

LJ ((Pe (r - 6 (n)), V(*)) = v ((pee(*), $$n,) 

A method for constructing such strategies has been described in [9]. By Condition 8. 
2 we can choose a number Na (E) such that 

a, I%(*, fp?’ , d&t), x (* , ‘Pe @ - 6 b)), 9”‘“‘)l < + (2.6) 

for all gocn) E DzO@) when n > Nz (a). From inequalities (2.6) and (2.5 ) 

we get that the strategies (Pi (t - 6 (n)) , n > Na (e) , solve Encounter Problem 

2.1. Thus, we have proved a statement even somewhat stronger than Theorem 2.1 

since for all n = 1, 2, . . . 

&o(n) c &* c Q@*), &o(n) CI D,* c Dp(n) 

3. The quintuple Z = (it,, T1, X, D,, &, x), where x isamappingofset 

[to, Tl x 
is called a 

2) if 

for to < 

[to, ‘Jr’1 k X x D, x D, into X and D, and Da satisfy Condition 11, 

dynamic system in the sense of Kalman if it satisfies the conditions: 

~1, ~2 E D,, v,, vz E Da , u, (s) = 24, (s) and vl (s) = z+ (s) 

tl < s < t2 < T, then for any x E X 

‘x (tl, t,, x, %r 3) = x (t8t 5, 5, Uzt us) 

3) 3c (t, t, 5, U, zj) = Z for all 

v E Da; 
4) the relation 

to \( t < T, t E X, u E D, and 

x (ts, 4, x, K 4 = x (b, tn,, x (t2, t,, 5, u, u), u, v) 

isvalidforanyto<t,<tS<t,fT andforanysEX,ueDrandvEDr; 

5) the mapping 5 = 1c (t, -c, z*, u, p) is defined for all t > 7 and is not 
necessarily defined for t < Z. 

The element 2 (t) = 3c (t, t,, z*, u, u) of set X is called a state of system 2 

at instant t and the corresponding mapping z (. ): [to, T] 3 X is called a trajectory of 
system Z if this system is found in state z* at instant t, and controls U and v act on it. 
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Any dynamic system Z = ([to, 2’1, X, L),, D,, x) defines the quasidynamic 
system 

2 (t*, z*) = ([t*, Tl, x, 4 It,, T), 4 It,, T), x*) 

with state function X, (r, U, V) = X (r, t,, Z*, u, u) , for each fixed initial state 
z (t*) = x* . The set [to, Tt X X is called the position set. For each fixed 

position {t*, x* } let the functional 

1 = g (x (*), u, u, r*, x*1 

be given on the set @ (x (C, , x*)) X & x D,, where CD (Z (t*, x*)) is the set 
of all trajectories of system ): (&, ty). Then the functional 

I = 1 (u, v, t,, x*1 = R (x (*, r,, x*7 u, 9, % C, t*, x*1 (3.1) 

has been defined on D, X Ds x [to, !.!‘I x X, which we call the first player ‘s pay- 
off at position {t.+, x*}. 

Definition 3.x. A quasidynamic game described by system 2 (t*, xp) , in 
which the first player ‘s payoff has the form (3.l),is called a dynamic ( k -dynamic) 
game 

r (&, x*1 = (1, J&* [t,, T), Ds* it,, T)) 

described by system z, in which the first player has the same payoff. 
The corresponding upper (lower) A -games 

A = {t* = t$ < t; < . . . < t&At = 2’) 

VA tt*, I*) = Vd rA (t*, se), VA (t*, x*) = d rA (& zg) 

v ct*; x*1 = val I? (t*, xt) 

are denoted by the symbol rA 6,~ x*) (rA (f*, x*)) . 

4. We introduce the following concepts l 

Definition 4.1. The vector [PA = (vpa,r, . . ., TA,~(A)), where CPA,IE 

D, tt*,tlA) and qA,k: X --t D, &.,, tkA), k = 2, 3, . . ., n (A), is caUtxi 
a pcsition A -strategy and the vector VA = (@J, . . ., c++P@)), where 

qA% X x D2 !&I, tkA)-+D, [t”,,, tkA), k = 1,2, . . ., n (A), 
is called a position upper A -strategy of the first player in system 2 (&, z*). The 
Pai;r VT;; (AI %& where A is an arbitrary finite partitioning of the interval 

::,, 
and VA is any position A -strategy of the first player in system 2 (t*, 
is called a position piecewise-program.strategy of the first player in sys- 

tem 22 (t*, I*). 
The position A -strategies ‘$?A, the position upper A -strategies %A 

and the position piecewise-program strategies $ = (A, $A) of the second player in 
system 22 (t*, x*> are defined similarly, 

Piecewise-program strategies were first introduced in differential game theory in 
precisely such a form. We note that the classes D,* It,, T) and D2* k,, T) of 
the player *s piecewise-program strategies, examined in the present paper, contain a 
wider class of strategies. 
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Let the state set of dynamic system II be a metric space with metric d. For any set 
K Ckto. 2’1 X Xwedenoteits e -n~ghborh~~ [to, 2’1 by K’ _ Lettherebecer- 
tainsets M and N in it,,, 2’1 x X and let the game’s initial podtion {t,,, z,} be 
given. We examine the fouowing two problems. 

Encounter Problem 4.1. For any number e > 0 find the fiW player’s 
position piecewise-program strategy (ps such that the relations 

(% x @)I E MB, (t, 2 (t)) E W (4.1) 

t*<t<‘G= z [5 (*)I < T 

are fulfilled for all trajectories 

x(t) = x (t, t*, x*, qh3, $9, 4J E D2* it** T) 

Evasion Problem 4.2. Find a number e > 0 and a second player’s po- 
sition piecewise-program strategy gE such that contact (4.1) is excluded for all 
trajectories 

x (t) = 3~ (6 t*> x*, cp, 4e), cp E D,* It,, T) 

We consider dynamic systems 2 satisfying the condition 
C.1, Forany to\<tI<tz<T and %,qEX the conbol# u*=u (t1, 

t2, 21, X2) E Dl [tl, $2) and v* = v (t1, t2, Xl, x2) E D2 It,, t2) -i2t2uchthat 

d" [x (t, tl, 21, u*, v)c x (t, t1, z2, 4 u*)l < drn tq, ql x (4.2) 
exP B (t - t3 + Y (t - tx) (t - El) tz y (6) = 0, 111, B > 0 

t1\< t < t2 

for all UED, and vED2, where d is some metric on the state set X. 

The following statement is valid. 

Theorem 4.1. Ifadynamicsystem I: satisfiescondiffonC.l,theneither 
the Encounter Problem 4.1 or the Evasion Problem 4.2 is solvable for any position 

{t*, (Fe) of this system. 

Proof, Theorem 4.1 is proved similarly to Theorem 2.1. The position char - 
acter of the piecewise-program strategies cPs* and ‘$8 follows from Condition 
1) - 5) and from the form of the payoff functional 

I=- inf 
t*e<g%. % frt r*) 

d&t I(4 5 (t))t Ml 

in the auxiliary games IT,@@) (t*, z,). 

5. Let us consider dynamic systems satisfying the conditions 
6) UC&, Vc:& 
C, 2, ForaU to<tl<T and xl, xs E X the con~ols U* - ZJ (tx, 

=1*4 EU and v* = u (tl, q, G) E V exist such that condition (4.2 1 is 
fulfilledforall UED~ and vE&. 

Definition 5.1. Apiecewire-programstrategy cp = (k, (pA&, . . .‘I TA,nd 
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(+ = (A; $A,I, . . .t *A&A))) of the first (second) player in system )= (t*, x8) 

is said t0 be piecewise-constant if the mappings fpA,k ($A&), k = 1, 2, . . ., YZ (A), 
take values in set u (v). 

The first (second) player’s position piecewise-constant strategy 

9’ = (A, VA) (9 = (A, 9.4)) 

in game Z (t*, 5*) can be identified with the mapping z&A (t, x) (vA (t, z)) 
of set it,,, 2’1 x X into U (V) such that 

(PA,k+l == 7.L (tkA, x) (‘+A,h+l = u (tr’, 2) > 

k=O,l, . . . . n(A)-1 

We state two problems. 

Encounter Problem 5.1. For any number 8 > 0 find the first player’s 
position piecewise-constant strategy such that relations (4.1) are fulfilled for all tra - 

jectories 

z (t) = ‘x; (t, t*, 5*, UAe (t, x’), 9)~ $ E &x* Et,, T) 

Evasion Problem 5.2. Findanumber E> 0 andasecondplayer’s position 
piecewise-constant strategy VA’ (t, CC) excluding contact (4.1) for all trajectories 

x (t) = x (t, t*, x*, % VAe (t, x)), ‘p 6% &* It,, T) 

The proof of the next statement is similar to that of Theorem 4.1, 

Theorem 5.1. If a dynamic system 2 satisfies Conditions 6) and C. 2, 

then either the Encounter Problem 5.1 or the Evasion Problem 5.2 is solvable for any 

position {t*, x,} of this system. 

6. We introduce the following concept, 

Definition 6.1, Any mapping 

U (t, 5): Ito, Tl x x + u (u (t, x) : [to, Tl x x -+ V) 

is called a position strategy of the first (second 1 players in system2 - 
For any position (t*, xX} of system I: and for any finite partitioning A of 

the interval It,, Tl the pair (A, u (8, x)) ({A, v ft, z)}), where u ft, x) 
(v (t, 2)) & a position strategy, can be treated as a position piecewise-constant strategy 

of the first (second) player in system 2 (t*, 5*). 
We examine the following two problems. 

Encounter Problem 6.1. Find the first player ‘s position strategy U (t, X) 
possessing the property: for any number c > 0 a number 6 > 0 exists such that 

relations (4.1) are fulfilled for all trajectories 

x (t) = x (t, t,, x*, {A, u (t, x)c>), $), 11, E Dz* It,, T) 

PI= max (& - tkA) <a 
k=O,l,...,n(A)--1 
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Evasion Problem 6.2. Find numbers 8 > 0 and 6 > 0 and asecond 
player ‘s position strategy v (t, z) excluding contact (4.1) for all trajectories 

2 (t) = x (t, t*, a%, cp, {A, ZJ (t, z))), cp E Ds” It,, T), 1 A I< 6 . 
Let us consider dynamic systems 2 satisfying the conditions 

7 ) the state set X is a compact metric space with metric d; 

8) for all {tl, slf E It,,, Tl X X and for any number E > 0 a number 6 = 

li (tl, xl, E) exists such that 

The following statement is valid. 

Theorem 6.1, If a dynamic system 2 satisfies Conditions 1) - 8 ) and C. 2, 
then either the Encounter Problem 6.1 or the Evasion Problem 6.2 is solvable for any 

position {t*, z*) of this system. 
To prove this theorem we use stable bridges similar to those in the theory of posi - 

tion differential games E 1 - 3 1. 
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