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Encounter-evasion game problems in quasidynamic and semidynamic systems
are analyzed, Theorems on the alternative in the class of piecewise-program
strategies of the players are stated and proved, The work adjoins the re-
searches in[1—9],

1. Let certain nonempty sets X, U and V exist. Set X iscalled the state
set; U (V) is the first (second) player's set of instantaneous values of the controls.
Let D, (D,) be some nonempty set of mappings on the half-open interval [t;, T)
into U (V) and let some mapping % ofset [f,, T) X Dy X D, into X be
given, Set D, (D,) is called the set of admissible controls of the first (second)
player and the mapping % is called the state function. The quintuple & = (I¢,, T),

X, Dy, D,, ») is called a quasidynamic system if the following condition is ful-
filled s

Condition 1), For any admissible controls u,, Uy & D, and vy, v, E D,
of the players and for any instants ¢, < &, < ¢, <t < T there exist admissible
controls uz & D, and vy& D, such that

u {8), H <<t < ba, _ {”1(53, Lt
us (f) = { @, h<t<t, BO= 0w, n<t<t

Anelement z () = % (¢, u, v) ofset X iscalled a state of system I at
instant ¢ and the mapping 2z (-) = % (-, u, v) of the half-open interval [t,, T)
intoset X is called the trajectory of this system, corresponding to the pair of con-
trols % and v. The concept of the players® piecewise-program strategies can be
introduced for quasidynamic systems analogously as in the theory of differential games
[61. By D, [t;, ty) (D,lty, t,)) we denote the set of all restrictions of the first
(second ) player's admissible controls to the half-open interval [¢,, t3) C [to, T).
Let A = {t, = t;2 < 4,2 <. .. <tyay® = T} be an arbitrary finite parti-
tioning of the half-open interval (¢,, 7). The set of all finite partitionings of the
half-open interval [¢,, T) is denoted {A}.

The sequence @a = (P - - - » Pam(a)), where @agq € Dy [0, ;%) and
Pax (£ > 2) is any mapping of set D, [t,, t,,2 ) X Dy [tg, tx-12) into D,
[t;18, 2x2), is called the first player's A -strategy. The pair ¢ = (A, @,),where

A e {A)} and @a isany A -strategy of the first player, is called the first play-

er 's piecewise-program strategy . The sequence @4 = (A%, ..., @>"¥),
where @*% is any mapping of set D, [¢,, t,18) XD, [t,, tx®) into D, [,
%) (k=1,2,..., n(A)) iscalled the first player’s upper A -strategy. The

A -strategy 1, the piecewise-program strategy 1 = (A, a) and the upper
A-strategy A of the second player are defined similarly. By Dja (Djya) we
denote the set of all A -strategies,by D, *(D,*) the set of all piecewise-program
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strategies and by D,A(D,2) ,the set of all upper A -strategies of the first (second )
player,
As for differential games [9], any pair of strategies @& and s defines a
unique pair of controls
ubd = u (9% ¥a) E Dy, va = v (94, $4) E D,
and, consequently , determines a unique trajectory
z (8) =% (¢, 4 ba) = % (2, ub, vy)
of system Z. Analogously,any pair of strategies @, and P® defines a unique
trajectory
z (t) =% (t’ Pa, 1IJA) =% (tr u ((pA) wA)’ v (q)Ay \PA))

and any pair of strategies @ and Y defines a unique trajectory

z(t) == (t, @, %) =x(t u(p,P), vi(e, V)

of system Z.
Let @ (X) be the set of all trajectories of the quasidynamic system 2 and let
a certain functional g be given on the set @ (£) X D, X Dj. Then, the functional

I'=1I(uv) =g(,uv)uU) (.1

is defined on the set D, X D,. This functional is called the flrst player 's payoff;
the functional — I is called the second player’s payoff. The mapping (1,1) defines
the functionals

I =1 (9% $a) =1 (u (92 ¥a), v (9%, ¥a)) (1.2)
on the sets Dy X Dy,
I =1(gs¥*) =1 (u(esr$%), v (s, ¥*) (1.3)

on the set D,p X D,» and

I=1 ((P, \P) =1 (u' (‘P’ ‘p)’ v (‘P, \P)) (L.4)
on the set Dx* X Dy*.
Definition 1,1, The triple T = (I, D,*, Dy*) is called an antagonistic
quasidynamic game, The quantity

V* — inf I(9,
o B ] (@)

is called the upper value and the quantity
V.= sup inf I(q¥)

P=Dy* P&Da*

is called the lower value of the game TI'. Wesay thatgame T hasa value if
the equality
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V¥ =V, =valTl

is valid,

The triple T? = (I, D42, Dypd (Ta = {I, Dya, D,2)) is called an upper
(a lower) A'-game, In these games one of the players is discriminated against, We
introduce the notation

Vo= inf sup I(qp? ¥s)

Vo= sup inf I(qa,}?)
PAED A vADA

The following statement is valid,
Lemma 1,1, If A, C A,, then
VASVHSVESV, >V, >V,
From this lemma it follows that the limits

V,=lim Vo™ - V_ = lim Vg
f—elo

00

exist,where {® (n)}, n =1, 2, ... , is a sequence of partitionings of the form

0 (r) = (& | 4" =ty + kS (n), k =0,1,...,2", 8(n) =1

2’[
andif V,_ = V_, the quasidynamic game I has the value
vall =V, = V_

As in [9] it can be shown that all upper and lower A -games have the values
VA = val T and V, = valT,.

2. Letus consider encounter-evasion games[1—3], Let the stateset X of
system X Dbe a metric space with metric d. Foranyset K [t Tl X X
we denote its & -neighborhood in [z, T) X X by K& . We formulate the
following two problems,

Encounter Problem 2,1, Forany number & >0 find the first player's
piecewise~program strategy @ such that the relations

{trz(eE M, {,z@O}eN, t,<t <1 =1Q, P < T (2.1)
are fulfilled for all trajectories
z (1) == (¢, 9, P), b = Dy*

Evasion Problem 2,2, Find anumber & >0 and asecond player's
piecewise-program strategy 1, excluding the contact (2,1) for any trajectory

z(t) =% (t, @, %), ¢ = Dy*
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On the set of trajectories of the quasidynamic system X we intruduce the uni-
form metric (
Iz ()22 ()] = sup dizy(t), 2, (¢
)z (+)] o EAUIEI0) (2.2)

We state the following conditions,

B, 1, Let {ud(™} be any sequence of admissible controls of the first player,
§(n) =(T — )2, {n}C (1,2, ...}; let ud(t) = ud™ (t — § (n))
for £+ 8(n) <Ct<CT and u™(t) for t,<C t <ty 8(n) bere-
strictions of admissible controls. Then a number w >> 0  exists such that 1,5
e D, ifonly 8 (n) < m;

Bc 20 p ['K‘ ('7 ub('ﬂ)’ vb(n)), H (‘, u*M"), Ub(n))] - O as ne~-» oo uni=
formly relatively to all  ud™, 3 8™ = D, and p¥™ = D,.

The following statement is valid,

Theorem 2,1, Ifa quasidynamic system 2 satisfies Conditions B,1 and
B. 2, then either the Encounter Problem 2, 1 or the Evasion Problem 2, 2is solvable for it,

Proof, Letus consider the family of upper @ (n) ~games T @™ in which
the first player *s payoff has the form

Ie=— inf dist [{¢, z (1)}, M], £>0 (2.3)
tost <t N (u, v)

N =inf {{, <t T | {t, 2 (D)} = [([8, T) x X) \ Nel}

dist [{t, z}, M] = infM {lt—t,|+dlz 2]}

{le Xy
z () == (L, u, v
Let a number & > 0 exists such that
V.(e) = lim VO™ =1lim val 2™ < 0
—ro0

T-—e00

Then the second player's @ (n)-strategies Weny and a number NV, (g) exist
satisfying the condition

I ((pa lPten('ﬂ)) < V+ (8)/21 n > Nl (8)
forall ¢ e Dy*. Consequently

l\irnf . dist {{t’ X (t’ P, lpz)(ﬂ))}' Mj > - Lz(s‘)‘ (2.4)
1e<I<Te (@, Veo(n))
forall @& D,* when n>N,(e) .1 — V. (e)/2> ¢, then from in-
equalities (2, 4) it follows that the strategies WYoeny (7 > Ny (€)) solve  Evasion
Problem 2,2, It is easy to show that these strategies solve Evasion Problem 2,2 also
when — V_(e)/2 ¢ .
It remains to consider the case when the relation

V,(e) =0 < val T < 0, n=t,2,...
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is fulfilled for all numbers & > 0. In this case there exist the first player 's upper
o (n) -strategies  @,@(m  satisfying the inequality

— &/2 < Tepp (9™, ) < O
forall ¢y & D,*. Consequently

Jnf o dist (% (e, 98, 0, M) < 5 (2.5)
tost<Tay (500, 1)

forall Y & D,*. From Condition B, 1 it follows that for the strategies @™ and
for any upper @ (n) -strategies of the second player we can construct ® (n) stra-
tegies ¢ ({ — 8 (n)) and  YPFny  such thatif

u, = (e (£ — 8 (n)), ¢o™), Uy = u (9™, Yim)
then

u () =u (1 —8(m), tp+6(M) <t T

v (e (t — 8 (n), VM) = v (9™, Yim)

A method for constructing such strategies has been described in [9], By Condition B,
2 we can choose a number N, (g) such that

0 [ (-, 02, i)y % (-1 e (£ = 8 (m), $o)] < 5 (2.6)

forall Y™ & Dy when 7> N,(e). From inequalities (2.6) and (2.5)
we get that the strategies ¢ (¢ — & (»)), n > N, (e) , solve Encounter Problem
2.1, Thus,we have proved a statement even somewhat stronger than Theorem 2.1
since forall n=1,2, ...

Diony © Dy* C D™, Doginy C Do* Do

3, The quintuple 2 = ([#y, T], X, D;, Dy, %), where % isamappingofset
{20, T1 X [y, T} X X X D, X D,into X and D, and D, satisfy Condition 1),
is called a dynamic system in the sense of Kalman if it satisfies the conditions:

2) if U, Uy &= Dy, U, 2 E Dy, uy (s) = Uy (5) and vy (s) = v, (s)
for to <t Cs<{ty<( T, thenforany g = X
% by, byy T, Uy, V) = % (lg, Iy, T, Us, Up)
3) x, Lz, u,v)y=2 foall LIS T,zeX,ueD;, ad
veE Dy
4) the relation
% (tgy byy T, U, V) = % (23, b, % (Te, 1y, T, ©, V), u, V)

isvalidforany £, < & <ty < t; < T andforany z e X, u e Dyand v & Dy;

5) the mapping z = % (f, T, ,, &, v) isdefined forall ¢>> T and isnot
necessarily defined for ¢ < 7.

The element z (t) = % (£, t, Z,, U, v) of set X is called a state of system Z
atinstant ¢ and the corresponding mapping z (-): {¢,, T] — X iscalleda trajectory of
system T if thissystern is found instate z, atinstant £, and controls % and v act on it.
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Any dynamic system 2 = ([ty, T1, X, Dy, D, %) defines the quasidynamic
system

2 (tyr zy) = (I8, T, X, Dy [t,, T), Dy 2y, T), %,)

with state function %, (¢, u, v) = % (f, ty, T4 U, V) , for each fixed initial state
z(t,) = &, . Theset [#;, Tl X X iscalled the position set, For each fixed
position {f,, z,} let the functional

I = g(z(')’ u, v, t*v -‘13*)

be given on the set @ (2 (¢, z,)) X Dy X D,, where @ (2 (t,, x,)) is the set
of all trajectories of system 3 (t*, z *), Then the functional

I = I (u, U, t*e x*) = g(x (’7 t*v x*v ua U), u3 Us t*’ x*) (3'1)

has been defined on Dy X D, X [y, T] X X, which we call the first player 's pay-
off at position {t,, z,}.

Definition 3,%i, A quasidynamic game described by system 2 (f,, z,) , in
which the first player 's payoff has the form (3.1),is called a dynamic ( & ~dynamic)
game

F (tti $*) = <I7 Dl* [t*’ T)a Dz* [t*o T)>

described by system 2, in which the first player has the same payoff,
The corresponding upper (lower) A ~games

A=, =t <ty <...<tnay=T}
VA (t4, 2,) = val T2 (£, 2,),  Va(ty, 24) = valTa (¢, 2,)
V (ts, z4) = val T (84, 24)

are denoted by the symbol I'A (2, z,) (Ta (¢4, 2,)) .
4, We introduce the following concepts.

Definition 4,1, The vector @a = (Pa,1, ..., Pa,n(a)), wWhere Qa1
Dy lty,,®) and @a,i: X = D, [thy, 52), k=2, 3, ..., n(A), iscalled
a position A -strategy and the vector ¢4 = (¢&:%, ..., Qa™A)), where
@41 X X Dy lthg, 52) > Dy [tha, £2), k=1,2, .. .. n(A),
is called a position upper A -strategy of the first player in system X {¢,, z,). The
pait @ = (A, 9a), where A is an abitrary finite partitioning of the interval
[tx,» T1 and @a isany position A -strategy of the first player in system 3 (z,.,

Z4),  iscalled a position piecewise-program.strategy of the first player in sys-
tem 3 (f,, Z4)-

The position A -strategies 1, the position upper A -strategies P2
and the position piecewise~program strategies Y = (A, P,) of the second player in
system X (f,, z,) are defined similarly,

Piecewise~program strategies were first introduced in differential game theory in
precisely such a form, We note that the classes D,*[t,, T) and D,* [#,, T) of
the player 's piecewise-program strategies , examined in the present paper, contain a
wider class of strategies,
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Letthestate setof dynamicsystem 2 beametric space withmetric d, For any set
K Clt,. T1 X X'wedenoteits € -neighborhoodin [t,, T]1 by K®*. Lettherebecer-
tainsets M and N in [z, T1 X X and let the game's initial position {z,, z,} be

given., We examine the following two problems,
Encounter Problem 4,1, Forany number g >0 find the first player's

position piecewise-program strategy Qe such that the relations

fnz@e M, L@} e N (4.1)
h<t<t=zl()ILKT
are fulfilled for all trajectories

(@) =%t e Too P V), © E Dy* 2y, T)

Evasion Problem 4,2, Findanumber e >0 anda second player's po-
sition piecewise-program strategy e such that contact (4,1) is excluded for all

trajectories
z(t) =% (¢ tyr Ty Py e), @ = Dy* 2y, T)

We consider dynamic systems 2 satisfying the condition
C, 1, Forany ¢, 4 <<t; X T and 23, 3, & X the controls u,=u (¢,
tyy Ty X)) E Dy lty, ) and v, = v (4, ts, 21, T2) & Dy [ty 1) existsuchthat

a™ [ (2, t1y Z1 Ugs V), % (2, b1y Zay U, V)] <A™ [24, 7] X (4.2)
expft—t)+v(t—t){t —t) lﬁi_lgv(ﬁ)=0, m, >0
LIS

faoall we D, and ve& Dy, where d  is some metric on the state set X.

The following statement is valid,

Theorem 4,1, If adynamic system 2 satisfies condition C.1,then either
the Encounter Problem 4,1 or the Evasion Problem 4,2 is solvable for any  position

{ts, T4} of this system,

Proof, Theorem 4,1 is proved similarly to Theorem 2.1, The position char-
acter of the piecewise-program strategies @¢ and Pe follows from Condition
1)—5) and from the form of the payoff functional

T inf dist [{t, z (1)}, M]
1St <ty N (u, 2, 1o, x2)
in the auxiliary games T'e®™ (¢, z,).
5. Let us consider dynamic systems satisfying the conditions

6) UCD, VCD,
C.2, Forall ¢, <{t;<T and 2Z;, 2, X the controls Uy = U ({1

Zu2) EU  and vy, = v (§), 23, 2,) =V exist such that condition (4.2) s
fulfilled forall uwe D, and veED,,

Definition 5,1, Apiecewise-programstrategy @ = (A; Qa,, . - -5 Pan(a))
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(p = (4; YAz« - o ‘PA,n(A))) of the fist (second) player in system pX (Tgr T4)
is said to be piecewise~constant if the mappings @ax (Yax), £ = 1,2, . .., n(A),
take values in set U (V).

The first (second) player's position piecewise-constant strategy

¢ = (A, (PA) (‘P = (A, "pA))

in game X (t,, z,) can be identified with the mapping ua (¢, ) (va (¢, 2))
ofset [t,, T1 x X into U (V) such that

Pajker = U (5% 2)  (Paks = v (B 7))
k=201, ..., n(A)—1
We state two problems.,
Encounter Problem 5,1, Forany number & >0 find the first player’s

position piecewise-constant strategy such that relations (4, 1) are fulfilled for all tra-
jectories

T (t) = % (f, tar Tyr ua® (2, 2),9), Y EDo* ey, T)

Evasion Problem 5,2, Findanumber &> (0 andasecondplayer's position
piecewise~constant strategy va® (¢, z) excluding contact (4, 1) for all trajectories

z (t) = % (t, t*a Tyy Py vA® (t: x))y @ S Dl* [t*, T)

The proof of the next statement is similar to that of Theorem 4.1.

Theorem 5,1, If adynamic system X satisfies Conditions 6) and C.2,
then either the Encounter Problem 5,1 or the Evasion Problem 5.2 is solvable for any
position  {t,, x,} of this system,

6. We introduce the following concept,
Definition 6,1, Any mapping
u(t,z): ltg, TI X X > U@, 2): {8, TI X X > V)

is called a position strategy of the first (second) players in systemZ .

For any position  {t4, Z} of system I and for any finite partitioning A of
the interval [#,, T] the pair {A, u (¢, 2)} ({4, v(t, 2)}), where u(z, z)
(v (t, 2)) is a position strategy , can be treated as a position piecewise-constant strategy
of the first (second) player in system 2 (g Ty)-

We examine the following two problems.,

Encounter Problem 6,1, Find the first player 's position strategy u (¢, Z)
possessing the property: for any number & >0 anumber 8§ >0 exists such that
relations (4, 1) are fulfilled for all trajectories

z(t) =% (t, tyr Ty, {A, u (2, 2)}, V), Y= Do* 2y, T)

|[Al= = max (kg — ) <8
k=0,1,...,m{A)—1
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Evasion Problem 6,2, Findnumbers ¢ >0 and 8 >0 and asecond

player's position strategy v (¢, 2) excluding contact (4, 1) for all trajectories

z(t) = % (& te Te» @, {A, v (3, z)}), ¢ & Dy* [t*, ), 1A1<6.
Let us consider dynamic systems X satisfying the conditions

7) the state set X is a compact metric space with metric d;
8)forall {#;, z;} € [ty, T1 X X and for any number ¢ > ( a number 8 =
§ (3, z1, &) exists such that

sup A (t, ty, z, u, v), % (2, t1, 25, u, V)] 8
(u, 7, 1)e=D X DeX[14, T

if only d [y, zo] < 6.

The following statement is valid,

Theorem 6,1, Ifa dynamicsystem X satisfies Conditions 1) —8) and C, 2,

then either the Encounter Problem 6,1 or the Evasion Problem 6, 2 is solvable for any
position {f4, Z4} of this system,

To prove this theorem we use stable bridges similar to those in the theory of posi-

tion Jifferential games [1 —3].
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